Construction Products Regulation (CPR) and cables

British Cables Association Guidance to Specifiers
Outline

In July 2016 BCA issued a statement concerning cables and the Construction Products Regulation (CPR). The statement informed that the application of the regulation is at present within a transition period known as ‘co-existence’. With effect from 1st July 2017, i.e. at the end of co-existence, it will be obligatory for cables, having an intended use for permanent installation in buildings and construction works, to be accompanied by a Declaration of Performance (DoP) and to have CE marking under the CPR. This requirement relates only to the Reaction to Fire performance of the cables. All types of cable are covered.

NOTE: Cables having Resistance to Fire, meaning retention of functionality during a fire, are not covered by the requirement now being introduced. They are scheduled to be covered at an, as yet, unknown date in the future.

It is the responsibility of the manufacturer to provide the DoP and to apply CE marking, but the main purpose of this paper is to offer advice and guidance to those who have the responsibility to specify the use of cables within construction works. Such groups of specifiers may be local authorities, architects, designers and the like.

In particular, the paper acknowledges that, unlike many other EU countries, the UK has no legislation that determines the level of performance required for the cables with respect to reaction to fire, nor is it likely to in the near future. The paper therefore explains the nature of the choices available, and the performance that can be expected, including by relation to existing parameters and requirements.

Background

The essential origins of bringing cables within the Construction Products Regulation and the associated timetable for implementation were explained in BCA’s statement of July 2016 – see http://bcauk.org/wp-content/uploads/2013/05/BCA-CPR-public-statement.pdf

NOTE: The statement and this paper exclude any complications or changes arising from BREXIT

The CPR covers the way in which the product is placed on the market. It does not say how and where a particular product should be used. Crucially it does not say what class of product should be used in any given circumstance.

In many EU countries the national authorities are in the process of introducing legislation to say that certain applications/installations must have certain CPR classes of cable. In some case this will be via the national equivalent of the UK Wiring Regulations.

In UK there is a long history of developing low fire hazard cables (variously LSHF, LSOH, OHLS etc), but no statutory requirements for their use. This is well understood by specifiers and designers of buildings and there is some provision written into BS 7671. The UK government had said a long time ago it will not amend the Building Regulations as far as Reaction to Fire for cables is concerned. Thus there may be some benefit in offering advice and guidance to specifiers, especially in respect of any relationship between existing requirements and those derived from the CPR.
What is available already?

A major pre-existing document of relevance is BS 7671 (IET Wiring Regulations). It specifies reaction to fire characteristics for cables in a number of places, most but not all of which are for installations in buildings and construction works and therefore fall under CPR. The existing requirements of BS 7671 can be used to illustrate the most important determinant for cables and reaction to fire under CPR – namely the classification.

The classification splits cables into 7 classes in respect of their reaction to fire. They range from Class Aca, being essentially non-combustible, as for instance bare MICC, through to class Fca, which is for cables having no measurable resistance to the spread of flames. All classes are summarised in Annex A.

For the vast majority of practical purposes it will be the classes from Eca up to B2ca that are most likely to be applicable. By reference to existing requirements in BS 7671 the significant comparisons are:

<table>
<thead>
<tr>
<th>Existing requirement in BS 7671</th>
<th>CPR class and equivalence</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS EN 60332-1-2 (Bunsen burner test)</td>
<td>Class Eca is an exact equivalent to the requirement of BS EN 60332-1-2</td>
<td>Minimum requirement for any application within buildings and construction works</td>
</tr>
<tr>
<td>BS EN 60332-1-2 and BS EN 60332-3</td>
<td>No direct equivalence, but classes above class Eca should be used.</td>
<td>The choice of class is a matter for the user, bearing in mind that a better performance is given by a higher class</td>
</tr>
<tr>
<td>BS EN 60332-1-2, BS EN 60332-3 and BS EN 61034-2</td>
<td>No direct equivalence, but classes above class Eca should be used, and must include at least the additional classification for smoke (see Annex A)</td>
<td>The choice of class is a matter for the user, bearing in mind that a better performance is given by a higher class. A minimum additional classification for smoke of s2 is required</td>
</tr>
</tbody>
</table>

Cautionary notes

Bearing in mind that the legalistic position is that any class automatically satisfies the requirements of the classes below, and hence for instance class Cca is automatically “better” than class Dca, it may be tempting to play safe and specify the highest possible class. This should not be done without being sure that every family of cable to be used in a particular construction works is available, with the necessary authentication, i.e. DoP and CE marking derived from certification via a Notified Body.

Furthermore, it should be recalled that the position of cables under CPR at present relates only to two Essential Requirements, or as they are properly called Basic Requirements of Construction Works (BRCW).
These are:

- Reaction to fire
- Dangerous substances

A cable that satisfies only these BRCWs is almost certainly not fit for purpose. Electrical and mechanical performance are covered via existing standards and users should ensure that the relevant performances for these requirements, are also satisfied, for instance in UK via a 3rd party certification and approval system, such as BASEC.

BCA recommendations

Taking account of all the above factors, and recognising that a very wide range of buildings and construction works are embraced by CPR, BCA recommends that specifiers should adopt the following guidance for the use of cables under the regulation:

1. Always specify that cables must have the CE marking according to CPR, accompanied by a Declaration of Performance;
2. Specify cables of class Eca or higher;
3. Preferably use cables described as low fire hazard or equivalent (LSHF, LSOH, OHLS, LSNH etc), in particular where fire safety requirements are high or very high;
4. Ensure that low fire hazard cables above class Eca include the additional classifications for smoke, acidity and, for particular applications, flaming droplets;
5. Avoid cables classified as Fca, as they are likely to burn uncontrollably in a fire;
6. In case of doubt, consult the manufacturer.
Annex A: Reaction to fire classes for cables

<table>
<thead>
<tr>
<th>Class ¹</th>
<th>Classification criteria ²</th>
<th>Test method(s)</th>
<th>Approximate performances of different classes according to EN13501-6</th>
<th>Additional classification ³</th>
<th>Test method(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aca</td>
<td>Gross heat of combustion (PCS)</td>
<td>EN ISO 1716</td>
<td>Level of highest performance corresponding to products that practically cannot burn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| B1ca    | • Vertical flame spread (FS)  
• Total heat release (THR)  
• Maximum value of heat release (Peak HRR)  
• Fire growth rate index (FIGRA) | EN 50399  
30 kW flame source (very high intensity) | Products that are combustible but show no or very little burning | Smoke production Flaming droplets/ particles Acidity | EN 61034-2  
EN 50399  
EN 60754-2 |
|        | Vertical flame spread (H) | EN 60332-1-2 |                             |                             |                |
| B2ca    | • Vertical flame spread (FS)  
• Total heat release (THR)  
• Maximum value of heat release (Peak HRR)  
• Fire growth rate index (FIGRA) | EN 50399  
20.5 kW flame source (high intensity) | Products that are combustible but show very little burning | Smoke production Flaming droplets/ particles Acidity | EN 61034-2  
EN 50399  
EN 60754-2 |
|        | Vertical flame spread (H) | EN 60332-1-2 |                             |                             |                |
| Cca     | • Vertical flame spread (FS)  
• Total heat release (THR)  
• Maximum value of heat release (Peak HRR)  
• Fire growth rate index (FIGRA) | EN 50399  
20.5 kW flame source (high intensity) | Products that do not give a continuous flame spread, show a limited fire growth rate and show a limited heat release rate | Smoke production Flaming droplets/ particles Acidity | EN 61034-2  
EN 50399  
EN 60754-2 |
|        | Vertical flame spread (H) | EN 60332-1-2 |                             |                             |                |
| Dca     | • Total heat release (THR)  
• Maximum value of heat release (Peak HRR)  
• Fire growth rate index (FIGRA) | EN 50399  
20.5 kW flame source (high intensity; NO flame spread measured) | Products that show a continuous flame spread, a moderate fire growth rate, and a moderate heat release rate. | Smoke production Flaming droplets/ particles Acidity | EN 61034-2  
EN 50399  
EN 60754-2 |
|        | Vertical flame spread (H) | EN 60332-1-2 |                             |                             |                |
| Eca     | Vertical flame spread (H) | EN 60332-1-2 | Products where a small flame attack is not causing large flame spread |                             |                |
| Fca     | Vertical flame spread (H) | EN 60332-1-2 | Flammable |                             |                |

¹ The level of reaction to fire performance decreases in going from Class Aca to Class Fca
² The full description of the classification criteria, the symbols used and the numerical values of reaction to fire performance are given in the Commission delegated regulation (EU) 2016/364 of 1 July 2015 (L 68/4 - 15 March 2016). These will eventually be taken into an updated version of EN 13501-6 Fire classification of construction products and building elements - Part 6: Classification using data from reaction to fire tests on electric cables
³ The additional classifications apply only to Classes B1, B2, C and D. They are optional, but should be regarded as essential for use with cables described as “low smoke” and/or “halogen-free”. Their full description can be found in the same documents as for footnote 2 above
For further information please contact:

Peter Smeeth peter.smeeth@btconnect.com
Mike Hagger: mike.hagger@btconnect.com

British Cables Association (BCA):
Flat 7, 11 The Grange
Wimbledon Village
London SW19 4PT
Tel: 07973 636688

Or visit www.bcauk.org